Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298)
نویسندگان
چکیده
The von Hippel-Lindau tumor suppressor protein is the substrate binding subunit of the VHL E3 ubiquitin ligase, which targets hydroxylated α subunit of hypoxia inducible factors (HIFs) for ubiquitination and subsequent proteasomal degradation. VHL is a potential target for treating anemia and ischemic diseases, motivating the development of inhibitors of the VHL:HIF-α protein-protein interaction. Additionally, bifunctional proteolysis targeting chimeras (PROTACs) containing a VHL ligand can hijack the E3 ligase activity to induce degradation of target proteins. We report the structure-guided design and group-based optimization of a series of VHL inhibitors with low nanomolar potencies and improved cellular permeability. Structure-activity relationships led to the discovery of potent inhibitors 10 and chemical probe VH298, with dissociation constants <100 nM, which induced marked HIF-1α intracellular stabilization. Our study provides new chemical tools to probe the VHL-HIF pathways and new VHL ligands for next-generation PROTACs.
منابع مشابه
Targeting the von Hippel–Lindau E3 Ubiquitin Ligase Using Small Molecules To Disrupt the VHL/HIF-1α Interaction
E3 ubiquitin ligases, which bind protein targets, leading to their ubiquitination and subsequent degradation, are attractive drug targets due to their exquisite substrate specificity. However, the development of small-molecule inhibitors has proven extraordinarily challenging as modulation of E3 ligase activities requires the targeting of protein-protein interactions. Using rational design, we ...
متن کاملStructure-Guided Design and Optimization of Small Molecules Targeting the Protein–Protein Interaction between the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase and the Hypoxia Inducible Factor (HIF) Alpha Subunit with in Vitro Nanomolar Affinities
E3 ubiquitin ligases are attractive targets in the ubiquitin-proteasome system, however, the development of small-molecule ligands has been rewarded with limited success. The von Hippel-Lindau protein (pVHL) is the substrate recognition subunit of the VHL E3 ligase that targets HIF-1α for degradation. We recently reported inhibitors of the pVHL:HIF-1α interaction, however they exhibited moderat...
متن کاملDiscovery of novel inhibitors disrupting HIF-1α/von Hippel–Lindau interaction through shape-based screening and cascade docking
Major research efforts have been devoted to the discovery and development of new chemical entities that could inhibit the protein-protein interaction between HIF-1α and the von Hippel-Lindau protein (pVHL), which serves as the substrate recognition subunit of an E3 ligase and is regarded as a crucial drug target in cancer, chronic anemia, and ischemia. Currently there is only one class of compo...
متن کاملSynthesis and pharmacological activity of 4-amino-5-chloro-2-methoxy-N-[(2S,4S)-1-ethyl-2-hydroxymethyl-4- pyrrolidinyl]benzamide (TKS159) and its optical isomers.
Of 4-amino-5-chloro-2-methoxy-N-(1-ethyl-2-hydroxymethyl-4- pyrrolidinyl)benzamide, four optical isomers, (2S,4S)-1 (TKS159), (2S,4R)-25, (2R,4S)-26 and (2R,4R)-27, were prepared from optically active 4-amino-1-ethyl-2-hydroxymethylpyrrolidine di-p-toluenesulfonate [(2S,4S)-14, (2S,4R)-17, (2R,4S)-20 and (2R,4R)-23, respectively]. The requisites, (2S,4S)-14, (2S,4R)-17, (2R,4S)-20 and (2R,4R)-2...
متن کاملThe role of von Hippel-Lindau tumor suppressor protein and hypoxia in renal clear cell carcinoma.
The majority of kidney cancers are caused by the mutation of the von Hippel-Lindau (VHL) tumor suppressor gene. VHL protein (pVHL) is part of an E3 ubiquitin ligase complex called VEC that is composed of elongin B, elongin C, cullin 2, NEDD8, and Rbx1. VEC targets a hypoxia-inducible factor (HIF) transcription factor for ubiquitin-mediated destruction selectively in the presence of oxygen. In t...
متن کامل